当前位置:主页 > 新闻中心 > 常见问题 >
气体输亚博足彩app下载送和压缩设备

  中地数媒(北京)科技文化有限责任公司奉行创新高效、以人为本的企业文化,坚持内容融合技术,创新驱动发展的经营方针,以高端培训、技术研发和知识服务为发展方向,旨在完成出版转型、媒体融合的重要使命

  输送和压缩气体的设备统称为气体压送机械,其作用与液体输送设备颇为类似,都是把能量传递给流体,使流体流动。

  气体压送机械可按其出口气体的压强或压缩比来分类。压送机械出口气体的压强也称为终压。压缩比是指压送机械出口与进口气体的绝对压强的比值。根据终压大致将压送机械分为:

  此外,压送机械按其结构与工作原理又可分为离心式、往复式、旋转式和流体作用式。

  离心通风机、鼓风机及离心压缩机的工作原理与离心泵相似,依靠叶轮的旋转运动,使气体获得能量,从而提高了压强。通风机通常为单级的,所产生的表压强低于15kPa(1500mm H2O),对气体起输送作用。鼓风机有单级亦有多级,产生的表压强低于3kgf/cm2,透平机都是多级的,产生的表压强高于3kgf/cm2,对气体都有较显著的压缩作用。

  图2-21所示为低压离心通风机。离心通风机的结构和单级离心泵相似。它的机壳断面有方形和圆形两种。离心通风机的叶片数较离心泵多,而且不限于后弯叶片,也有前弯叶片。在中、低压离心通风机中,多采用前弯叶片,主要原因是由于要求压力不高。前弯叶片有利于提高风速,从而减少通风机的截面积,因而设备尺寸可较后弯时为小。但是,使用前弯叶片时,风机的效率低,能量损失较大。

  离心通风机的主要性能参数有风量、亚博足彩app下载风压、轴功率和效率。由于气体通过风机的压强变化较小,在风机内运动的气体可视为不可压缩,所以离心泵基本方程式亦可用来分析离心通风机的性能。

  (1)风量风量是单位时间内从风机出口排出的气体体积,并以风机进口处气体的状态计,以Q表示,单位为m3/h。

  (2)风压风压是单位体积的气体流过风机时所获得的能量,以ht表示,单位为J/m3=N/m2。由于ht的单位与压强的单位相同,故称为风压。既然是压强的单位,通常又用mmH2O来表示。

  目前还不能用理论方法去精确计算离心通风机的风压,而是由实验测定。一般通过测量风机进、出口处气体的流速与压强的数据,按柏努利方程式来计算风压。

  离心通风机对气体所提供的有效能量,常以1m3气体作为基准。设风机进口为截面1-1′,出口为截面2-2′,根据以单位体积流体为基准的柏努利方程式可得离心通风机的风压为:

  式中ρ及(z2-z1)值都比较小,(z2-z1)ρg可忽略;风机进、出口间管段很短,ρ∑hf1-2也可忽略;又当风机进口处与大气直接相连时,且截面1-1′位于风机进口外侧,则v1也可忽略,因此上式可简化为:

  称为动风压。离心通风和出口处气体的流速较大,故动风压不能忽略,根据上述的实验装置情况,离心通风机的风压为静风压与动风压之和,又称为全风压。通风机性能参数表上所列的风压是指全风压。

  风机的轴功率与被输送气体密度有关,风机性能参数表上所列出的轴功率均为实验条件下,即空气的密度为1.2kg/m3时的数值,若所输送的气体密度与此不同,可按下式进行换算,即:

  离心通风机的特性曲线所示。表示某种型号通风机在一定转速下,风量Q与风压ht、静风压hpt、轴功率、效率η四者的关系。

  (2)根据所输送气体的性质(如清洁空气、易燃、易爆或腐蚀气体以及含尘气体等)与风压范围,确定风机类型。若输送的是清洁空气,或与空气性质相近的气体,可选用一般类型的离心通风机,常用的有4-72型、8-18型和9-27型。前一类型属于低压通风机,后两类属于高压通风机。

  每一类型的离心通风机又有各种不同直径的叶轮,因此离心通风机的型号是在类型之后又加机号,如4-72No.12。4-72表示类型,No.12表示机号,其中12表示叶轮直径为12cm。

  离心压缩机常称透平压缩机,主要结构、工作原理都与离心鼓风机相似,只是离心压缩机的叶轮级数多,可在10级以上,转速较高,故能产生更高的压强。由于气体的压缩比较高,体积变化就比较大,温度升高也较显著。因此,离心压缩机常分成几段,叶轮直径与宽度逐段缩小,段与段之间设置中间冷却器,以免气体温度过高。

  罗茨鼓风机的风量和转速成正比,而且几乎不受出口强度变化的影响。罗茨鼓风机转速一定时,风量可保持大体不变,故称定容式鼓风机。这一类型鼓风机的输气量范围是2~500m

  2)以内,但在表压强为40kPa(0.4kgf/cm2)附近效率较高。罗茨鼓风机的出口应安装气体稳压罐,并配置安全阀。一般采用回路支路调节流量。出口阀不能完全关闭。操作温度不能超过85℃,否则会引起转子受热膨胀,发生碰撞。

  图2-25所示为立式单作用双缸压缩机,在机体内装有两个并联的气缸1,称为双缸,两个活塞2连于同一根曲轴5上。吸气阀4和排气阀3都在气缸的上部。气缸与活塞端面之间所组成的封闭容积是压缩机的工作容积。曲柄连杆机构推动活塞不断在气缸中作往复运动,使气缸通过吸气阀和排气阀的控制,循环地进行吸气-压缩-排气-膨胀过程,以达到提高气体压强的目的。气缸壁上装有散热翅片,使热量易于扩散。

  往复压缩机的构造和工作原理与往复泵虽相接近,但因往复压缩机所处理的是可压缩的气体,在压缩后气体的压强增大,体积缩小,温度升高,因此往复压缩机的工作过程与往复泵就有所不同,图2-26为单作用往复式压缩机的工作过程。当活塞运动至气缸的最左端(图中A点),压出行程结束。但因为机械结构上的原因,虽则活塞已达到行程的最左端,气缸左侧还有一些容积,称余隙容积。由于余隙的存在,吸入行程开始阶段为余隙内压强为p

  1(图中B点)吸入活门才开启,压强为p1的气体被吸入缸内。在整个吸气过程中,压强基本保持不变,直至活塞移至最右端(图中C点),吸入行程结束。当活塞改向左移,压缩行程开始,吸入活门关闭,缸内气体被压缩,当缸内气体的压强增大至稍高于p2(图中D点),排出活门开启,气体从缸体排出,直至活塞至最左端,排出过程结束。由此可见,压缩机的一个工作循环是由膨胀-吸入-压缩-排出等四个阶段组成。在图2-26的p-V坐标上为一封闭曲线,BC为吸入阶段,CD为压缩阶段,DA为排出阶段,而AB则为余隙气体的膨胀阶段。由于气缸余隙内有高压气体存在,因而使吸入气体量减少,增加动力消耗。故余隙不宜过大,一般余隙容积为活塞一次所扫过容积的3%~8%,此百分比又称余隙系数,以符号ε表示。

  a——活塞扫过的容积。当气体经压缩后体积缩小,压强增大,温度显著上升。为了提高压缩机的工作效率,在操作上常使用段间冷却方法,以减少气体温度的上升,同时在气缸构造上设置空冷或水冷装置。

  /min表示。排气压力(或称终压)是以Mpa表示。在实际选用时,首先应考虑所输送气体的特殊性质,选定压缩机的种类和压缩段数。然后根据压缩机按气缸的空间位置划分各类型的优缺点,选定压缩机的类型。压缩机的机种和型号选定以后,即可根据生产的需要,按照前述的生产能力和排气压力两个指标,由产品样本中,选定所需用的压缩机。

  往复真空泵的基本结构和操作原理与往复压缩机相同,只是真空泵在低压下操作,气缸内外压差很小,所用阀门必须更加轻巧,启闭方便。另外,当所需达到的线%的线。这样高的压缩比,余隙中残余气体对真空泵的抽气速率影响必然很大。为了减少余隙影响,在真空泵气缸两端之间设置一条平衡气道,在活塞排气终了时,使平衡气道短时间连通,余隙中残余气体从一侧流向另一侧,以降低残余气体的压力,减少余隙的影响。

  )左右,也可以作鼓风机用,但所产生的表压强不超过0.1MPa(1kgf/cm

  )。当被抽吸的气体不宜与水接触时,泵内可充以其他液体,所以又称液环线-工作室;6-排气孔;7-排气管;8-进气管;9-放空管;10-水箱;11-放水管道;12-控制阀

  此类泵结构简单、紧凑,易于制造与维修,由于旋转部分没有机械摩擦,使用寿命长,操作可靠。适用于抽吸含有液体的气体,尤其在抽吸有腐蚀性或爆炸性气体时更为合适。但效率很低,约为30%~50%,所能造成的真空度受液体温度所限制。